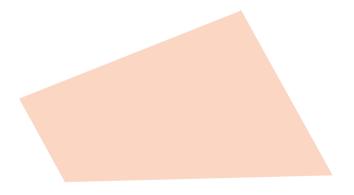
Objectif d'apprentissage de cette leçon

- Pratiquer la « partie conception » de compensation conditionnelle à travers des exemples
 - 1. L'appliquer à de exemple inconnu mais quelque peu similaire
 - 2. Résoudre l'exemple connu par la nouvelle méthode

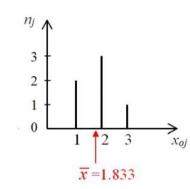
1. Quadrilatère

• en class



2. Moyenne arithmétique par « la compensation conditionnelle »

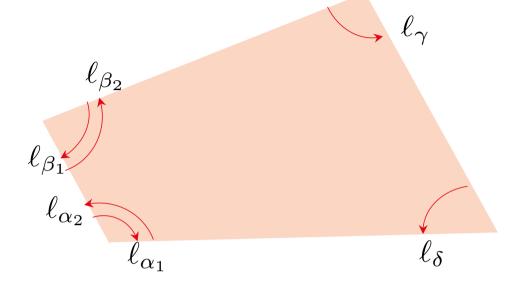
• à la maison



71

EPFL

Exemple - Quadrilatère



Observations

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$

- Solution(s)
 - A. Proposez vous-même (en group de 3 ou 2)
 - B. Montrez-le au tableau

Poser le problème

- 1. Surdétermination, r = ?
- 2. Choix des conditions, w = ?
- 3. Modèle stochastique = ?
- Indications
 - Quels sont les poids d' α et β bêta par rapport à γ et δ ?

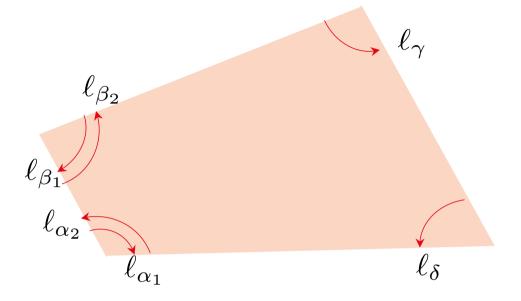
Exemple - Quadrilatère

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$

• Quels sont les poids d' α et β bêta par rapport à γ et δ ?

$$\ell_{lpha}=$$
 $\sigma_{ar{\ell}_{lpha}}^2=$ $\sigma_{ar{\ell}_{lpha}}^2=\frac{1}{\sigma^2}=$



Procédé

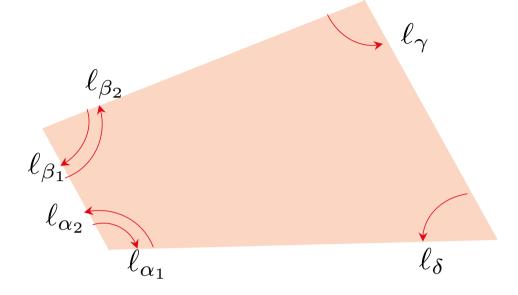
- exprimer le modèle fonctionnel
- exprimer le modèle stochastique

Exemple - Quadrilatère

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$

I. Modèle fonctionnel (option)



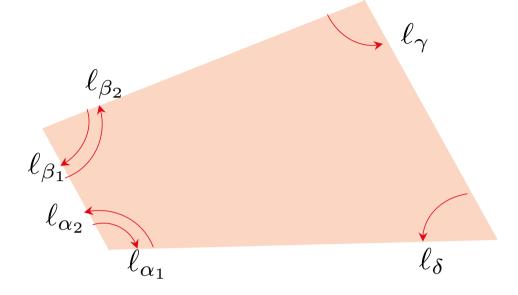
B_{I.}

Exemple - Quadrilatère

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$

II. Modèle fonctionnel (option)



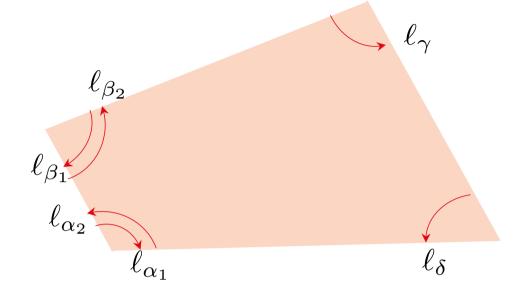
• B_{II.}

Exemple - Quadrilatère

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$

III. Modèle fonctionnel (option)

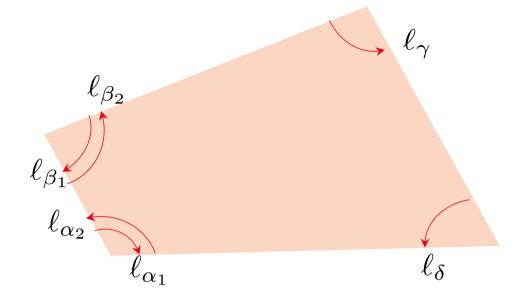


■ B_{III.}

Exemple - Quadrilatère

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

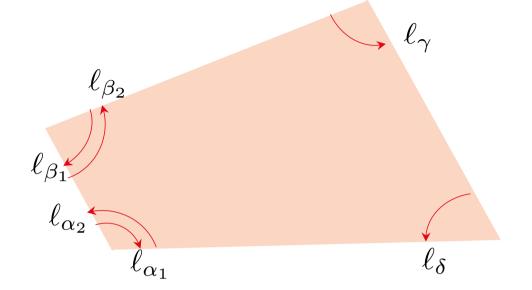
$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$



Exemple - Quadrilatère

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$

$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$



- Exemple numérique
 - Moodle quadri_condi.py
 - 3 solutions
 - Via moyenne $\bar{\alpha},\,\bar{\beta},\,\gamma,\,\delta$, optimale?
 - Direct (une d'option possible)
 - Direct, d'avantage de conditions ?

Compensation conditionelle

Poser le problème ...

- Surdétermination
 - Nombre de conditions indépendantes : r
- Modèle fonctionnel
 - Choix des conditions : w
 - Linéarisation analytiques ou numérique : B

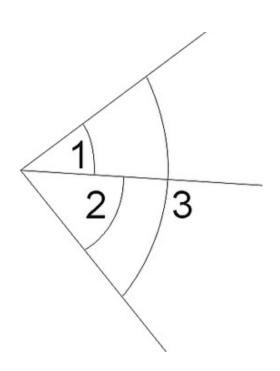
$$\frac{\partial \varphi(\check{\ell}^T)}{\partial \check{\ell}^T} \Big|_{\check{\ell} = \ell} = \begin{pmatrix}
\frac{\partial \varphi_1(\check{\ell}^T)}{\partial \check{\ell}_1} & \frac{\partial \varphi_2(\check{\ell}^T)}{\partial \check{\ell}_2} & \dots & \frac{\partial \varphi_1(\check{\ell}^T)}{\partial \check{\ell}_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \varphi_r(\check{\ell}^T)}{\partial \check{\ell}_1} & \frac{\partial \varphi_r(\check{\ell}^T)}{\partial \check{\ell}_2} & \dots & \frac{\partial \varphi_r(\check{\ell}^T)}{\partial \check{\ell}_n}
\end{pmatrix} \Big|_{\check{\ell} = \ell}$$

- Modèle stochastique
 - Ecart-type *a priori* et cofacteurs : σ_0 , $\mathbf{Q}_{\ell\ell}$
 - Variances et corrélations : $\mathbf{K}_{\ell\ell}$

Méthodes d'estimatio

Compensation conditionelle Analyser les résultats ...

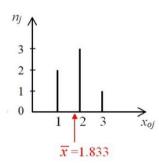
- Détecter une faute
 - Avant compensation: écart de fermeture w_i trop grand
 - Après: résidu compensé trop grand: $|\hat{v}_i/\sigma_{\ell_i}| >$ seuil
- Estimer la précision
 - Calcul des cofacteurs et de $\hat{\sigma}_0$ a posteriori
- Améliorer les valeurs mesurées
 - Cofacteurs des valeurs compensées plus faibles
- Evaluer les mesures et les modèles
 - Analyse globale: $\hat{\sigma}_0$ a posteriori / σ_0 a priori
 - Détection d'erreurs systématiques: tendances
 - Adaptation des modèles
 - Fonctionnel: autres conditions
 - Stochastique: autres variances et corrélations



EPFL Exemple

2. Moyenne via « la compensation conditionnelle » (à la maison)

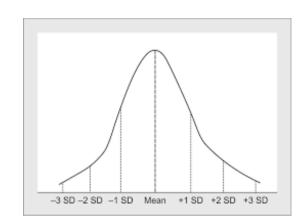
- Design
 - comment former les conditions?
 - combien de conditions pour 5 mesures?
 - Y a-t-il d'autres façons possibles de les former?
- Résultats
 - · le choix des conditions affectera-t-il
 - i) la moyenne?
 - ii) sa variance?
 - iii) $\mathbf{Q}_{\hat{v}\hat{v}},~\mathbf{Q}_{\hat{\ell}\hat{\ell}}$?
- Procédé
 - · A vous réfléchir
 - Questions pour jeudi



ME 8-1: Exemples

- Moyenne arithmétique
 - Visualisation des résidus
 - Modèle conditionnel
 - Options pour ${f B}$, similitude avec le gaz parfait
 - Apparition du noyau K (Kernel)
 - Visualisation des matrices des cofacteurs
 - Ecart-type a posteriori cas particuler: $\mathbf{P} = \mathbf{I}$ et $r = n-1 \longrightarrow \hat{\sigma}_0 = \sqrt{\frac{\hat{\mathbf{v}}^T \mathbf{P} \hat{\mathbf{v}}}{r}} = \sqrt{\frac{\sum \hat{v}_i^2}{n-1}}$

- Certaines angles mesurés 2 fois
- Options, équivalences et pièges



ME 8-2: Révision

- Inventaire de vos questions
 - Exemples : suite
 - Guides pour
 - Poser le problème
 - Analyser les résultats
- Séances d'exercices
 - Séries 5 à 8, aide individuelle
- Selon vos questions
 - Réponses et sondages

